T, CAT4AT T T8BR0

3A0

K]

THE ASTROPHYSICAL JOURNAL, 414:86-97, 1993 September 1
© 1993. The American Astronomical Society. All rights reserved. Printed in U.S.A.

ANALYSIS OF THE DISTRIBUTION OF PITCH ANGLES IN MODEL GALACTIC DISKS:
NUMERICAL METHODS AND ALGORITHMS

WiLLiaM S. RUSSELL
Columbia University and NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025-7819

AND

WiLLIAM W. ROBERTS, JR.

Department of Applied Mathematics and Virginia Institute for Theoretical Astronomy,
Olsson Hall, University of Virginia, Charlottesville, VA 22903-2442

Received 1992 April 23; accepted 1993 March 9

ABSTRACT

Numerical methods and algorithms are developed for analyzing the morphology of global and local struc-
ture in prototype and observed disk-shaped galaxies. One prototype spiral galaxy, taken from the 1992
theoretical-computational studies of Roberts et al., serves as the representative candidate to be analyzed in
this paper. From the computed distribution of the gaseous component, “partitioning” methods based on
nearest-neighbor and Voronoi polyhedra calculations are applied to capture regions of high-population gas
density associated with local arm segments, spurs, feathers, and secondary features. The pitch angle and length
of each of these features are determined using least-squares procedures minimizing perpendicular distances
from data points to the regression curve in adapted logarithmic spiral coordinates. The resulting least-squares
approximations are further checked for goodness of fit using the Kolmogorov-Smirnov test. Despite the fact
that the representative prototype model galaxy is driven by an underlying global two-armed density wave of
10°-15° pitch angle, the gas response is found to exhibit many local and mesoscale spiral features of much
greater pitch angle. These features are attributed to the self-gravitational effects of the gas itself on local scales.
Prominent peaks are found in the computed pitch angle distribution between 20° and 40°; these are attributed
to spurs and local arm segments that branch off the underlying 10°-15° modal density-wave-driven global
spiral pattern. Prominent highly inclined spurs and feathers in the outer half of the prototype galaxy are

found to give rise to a peak pitch angle distribution between 50° and 55°.
Subject headings: galaxies: ISM — galaxies: kinematics and dynamics — galaxies: spiral

1. INTRODUCTION

Explanation of the spiral structure manifested in many disk-
shaped galaxies has been a challenge to astronomers and astro-
physicists for over a century. It has been observed that global
spiral arms are actually composed of successive local spiral
features (secondary features), but thorough examination of
these subsections or isolated segments has never been under-
taken through quantitative methods. The work presented here
isolates and investigates the morphological characteristics of
this spiral structure on global and local scales in prototype
galaxies.

In the past, little attention has been paid to properties such
as length and pitch angle (the angle between the feature and the
tangent of a circle at the same radius as the starting point of the
feature). Lynds (1970) made studies of the dust lane widths and
dark feathers that occurred in Sc-type galaxies. More recently,
Elmegreen (1979, 1980) made approximate measurements of
primary spurs appearing in a variety of spiral galaxies. The
lengths, widths, and pitch angles of 28 primary spurs were
measured. The estimated error in pitch angle calculations was
+ 5° since uncertainties arose in defining precisely the edges of
features. This imprecision also lead to errors of the order 0.1
kpc in length and width approximations. Error bounds such as
these were to be expected and have motivated the following
questions: What constitutes a feature? How exactly are edges
of features defined? Is there an optimal pitch angle and length
for a given feature?
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Mathematical-computational simulations carried out by
Roberts et al. (1992; see also Roberts, Lowe, & Adler 1990;
Roberts 1992a, b, 1993) follow the dynamics of approximately
10,000 gas clouds. These clouds undergo collisions, participate
in star formation, interact through their own self-gravitation,
and in several cases are driven by a modal spiral density wave
(SDW) pattern (Bertin et al. 1989a, b; Lowe 1988; also see Lin
& Shu 1964, 1966).

Earlier model simulations by Levinson & Roberts (1981),
Roberts & Hausman (1984), Hausman & Roberts (1984), and
Roberts & Stewart (1987) considered non—self-gravitating gas
and used only approximate SDW modes. They mimicked the
stochastic, self-propagating star formation process (SSPSF)
mechanism (Mueller & Arnett 1976; Gerola & Seiden 1979,
and Seiden & Gerola 1979) by allowing young stellar associ-
ations to form at the sites of cloud collisions; supernovae
explode within these young stellar associations after some sto-
chastic delay time. These supernovae events can subsequently
cause other young stellar associations to be created in neigh-
boring clouds.The self-gravity force field effects, created by the
gravitational pull of other gas clouds in the interstellar
medium, was modeled by Adler (1989). Using Fourier trans-
form techniques adapted from those developed by Miller
(1976, 1978), Miller & Smith (19792, b), and Smith & Miller
(1986), Adler was able to effectively model the gravitational
influence of the cloud ensemble. It is the gaseous self-gravity
that is instrumental in creating strong density inhomogeneities
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along spiral arms and in forming various types of interesting
secondary spiral features (Roberts & Adler 1989).

Each gas cloud in the computer simulations essentially rep-
resents a giant molecular cloud (GMC) compatible with
approximately 107 solar masses. These GMCs (or simple
clouds) can be thought of as partly molecular, partly atomic
clouds consequently spanning the entire spectrum of cloudy
interstellar matter. The clouds are of uniform size and shape
and thus merely building blocks in the spiral galactic structure.
However, important physical properties can be ascertained,
and through animation techniques, physical phenomena
observed.

The prototype galaxy of primary focus analyzed in this
paper constitutes one representative model galaxy taken from
the multi-parameter space, theoretical-computational studies
of Roberts et al. (1992). The gaseous component in this case is
made up of a low-dispersion-speed system of gas clouds (e.g.,
with a one-dimensional dispersion speed of 6 km s™1) that
constitute approximately 6% of the total galactic mass and
whose average disk mass surface density, for example, at an
annular radius of the 10 kpc neighborhood, constitutes
approximately 20% of the total galactic mass surface density.
The dynamics of the gas cloud system is governed in part by
the self-gravitational forces that act between constituent
clouds, together with the spiral perturbed gravitational field of
a computed density wave mode that approximates a 10°-15°
spiral in the outer parts of the disk. Energy-dissipating cloud-
cloud collisions together with energy-replenishing star forma-
tion activity (culminating in supernovae explosions with
velocity boosts to neighboring gas clouds) also govern the
dynamics of the gas cloud system on local scales.

In contrast to “ruler-and-compass” or “hand-to-eye” mea-
surements employed by previous investigators, an automated
mathematical method is formulated to (1) capture distinct fea-
tures evolving within the spiral galactic disk and (2) measure
their lengths and pitch angles. Carlberg & Freedman (1985)
had limited success with a logarithmic spiral decomposition
method used to describe the morphology of global arms
arising in model galaxies dominated solely by gravity and dis-
sipation. However, this method is unsuitable for examining
characteristics of local features (see Russell 1991).

To isolate the prominent features, methods are employed
which are based on the premise that regions of high cloud
concentration constitute features. Hence, if gas clouds contrib-
uting to a dense region can be ascertained, then the associated
feature has effectively been isolated. The first algorithm selects
only clouds which have a sufficient number of neighbors within
a certain distance tolerance to contribute to a feature. The
second algorithm utilizes the Voronoi diagram (Voronoi 1908)
where each cloud is assumed to own a certain area of the
galaxy. Obviously, clouds in dense regions are assigned smaller
areas, and consequently clouds associated with small Voronoi
polyhedra are selected as contributing to a feature. These two
“ partitioning ” methods are described in § 2.

Once the features have been captured, the method of least
squares is incorporated into the mathematical method to
approximate the preferred orientations. Since the features,
from long, trailing global arms to short spurs, have a spiral
form (generally due to differential rotation of the galaxy), it is
appropriate to perform the least-squares analysis in a spiral
coordinate system. The logarithmic spiral (log-spiral) r =
roe®? has the attractive property of constant pitch angle.
Hence, the spiral coordinates (Inr, 8) are employed. The least-
squares algorithm is described in § 3.

The synergism of the partitioning algorithms and the modi-
fied least-squares procedure is examined on a test galaxy
whose spiral properties are already known (see Appendix).
Section 4 assesses the accuracy and effectiveness of the method
to the prototype galaxy of Roberts et al. (1990, 1992). Conclu-
sions for this prototype galactic system are drawn concerning
the distributions of pitch angles and subsequently related to
the different morphologies of the galaxies.

2. THE PARTITIONING ALGORITHMS

To isolate the distinct features in the spiral galactic disk, a
mathematical model must be developed. Initially, the gas cloud
distribution is separated into areas of high density which con-
stitute secondary features. This process is termed clumping;
two algorithms for generating these clumps will be described.
The precision of the partitioning algorithms is of utmost
importance to the overall success of the mathematical method.
Each cloud can contribute to one feature only. It is essential
that all clouds constituting a single feature are isolated and
thus not included in any other feature. The pitch angle of a
feature may change significantly if clouds are missed or acci-
dentally included.

Automated partitioning algorithms are formulated so that
any spiral galactic disk simulation (at any epoch) of the type
done by Roberts et al. (1992) can be separated into feathers,
spurs, bridges, and other secondary features in order to further
compute the distribution of pitch angles of these spiral inho-
mogeneities.

2.1. The Distance Tolerance Algorithm

Clouds in regions of high density necessarily have closer
neighboring clouds than those in sparse regions. This provides
the foundation of the distance tolerance (d,,) algorithm.
Clouds are assumed to contribute to features if and only if they
have a sufficient number of neighboring clouds within a given
distance tolerance. After eliminating clouds not satisfying this
criterion, the remaining clouds are sorted into clumps. Each
cloud, along with its neighbors, is assigned an initial clump
number or tag. If two initially separate clumps have any
common clouds, then the clumps are joined. Following this
procedure for every cloud ensures that each distinct cloud will
contribute to only one clump. The resulting clumps are treated
as individual features.

Several refinements need to be made before this method can
be successfully implemented. The foremost problem is due to
the number of clouds N (=10,000) distributed over the
prototype galactic disk. Since the method compares distances
between clouds there are, intuitively, O(N2) comparisons,
which is computationally unacceptable. The problem is over-
come by using a small cell/big cell technique. A Cartesian grid
is generated over the galactic disk. For each cloud within each
small cell (of the Cartesian grid), the distance between it and
every other cloud in that small cell is found. Consequently,
only distances between a cloud and other clouds in the same
small cell (instead of every cloud in the galaxy) are computed. If
a cloud lies in the corner of a cell it may have additional
neighboring clouds within d,,, lying in an adjacent cell. This
may cause the cloud to be omitted since it may not have a
sufficient number of neighboring clouds in its small cell within
d,;- By introducing a big cell formed by the nine adjacent celis
centered about the associated small cell, the problem of cloud
omission is overcome. For each cloud C; in the small cell,
distances are found between C; and every cloud in its associ-
ated big cell. If there are M small cells this is roughly a 9N?/M
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algorithm; for the overlaid computational grid, this resultsin a
significant reduction in execution time.

Another problem related to the choice of a d,, value or
expression also arises. Initially, a constant value was used for
program testing, but this selection was fairly arbitrary. This
constant d,,; seemed to produce large clumps toward the center
of the galactic disk and small clumps at the outer edges. Conse-
quently, this choice of d,,; condensed several features as a single
clump in internal regions of the galactic disk, but split distinct
features into small clumps at outer radial values. This was a
direct result of a decrease in cloud density with increased radial
distance; features located closer to the outer edge of the galac-
tic disk are generally less dense than those toward the center.
Therefore, to successfully capture all the features, an expression
for d,,; which is a monotonically increasing function of galactic
radius must be derived.

For the prototype galaxy to which this analysis is to be
applied, the phase of the spiral perturbation representing a
spiral density wave mode is not far from a constant log-spiral
of the form

mln(r/ry)
tan (i)

Or) = (1)
where the pitch angle i, satisfies tan (i) = r ! dr/d6 where 6
increases counterclockwise. The wave number vector k of the
general wave form ¢™* ", where r is a position vector, can be
split into radial and axial components k, and kg, respectively:

o0 m
A = 2
b= T Tan )’ (22)

100 16@dr m

=TT (2b)

1t therefore follows that

2

k k=k =k +kl= 3)

r? sin? (ip)°
but since the pitch angle parameter p = tan (iy) implies that
sin (ig) = p/(1 + p*)'/?, it follows that
_m(l + p?'?
= p .

Hence the wavelength A satisfies

k @

goim_ 2w
ko om(l +pAHv
implying that wavelength varies linearly as a function of
radius. More simply, the distance between spiral arms grows
linearly with r. It is conjectured that the expected distances
between clouds therefore also grows linearly with r. More
formally:

&)

dtol = C}‘ B (6)

where { is a constant. An initial choice of { = 0.02 captures the
features throughout the galactic disk very well.

2.2. The Area Tolerance Algorithm

To determine the accuracy of the d,; algorithm, it was neces-
sary to develop another quite different clumping algorithm.

Vol. 414

This algorithm, henceforth referred to as the a,,; algorithm, is
based on the idea that every cloud “ owns” a certain portion of
space in the shape of a polyhedron. This portion of space is the
area surrounding each cloud C,, closer to C; than any neigh-
boring cloud C; and referred to here as the Voronoi poly-
hedron. The set of Voronoi polyhedra of an associated
distribution of a finite set of points § is known as the Voronoi
diagram.

The Voronoi diagram of § is a well-known structure which
makes available precise information concerning S. It has had
numerous applications in a broad spectrum of the natural and
physical sciences including physics (Brostow, Dussault, & Fox
1978), biology (Blum 1973), and geography (Rhynsburger 1972,
1973), and since allotting spaces to molecules can be accom-
plished by this technique, it is also used in molecular physics,
biochemistry, materials science, physical chemistry, and of
course astronomy and astrophysics (Kiang 1966). Not sur-
prisingly, these polyhedra were first defined by mathematicians
(Dirichlet 1850; Voronoi 1908) and are variously known as
Dirichlet regions, Thiessen polygons, Wigner-Seitz cells, or
Voronoi polyhedra; this latter description is the terminology
used here.

Given a configuration of points C,, C,,...,Cy in L-
dimensional Euclidean space E, the Voronoi polyhedron ¥
around a given center C, is the set of points, or area in E closer
to C; than to any C;: more formally

Vi={xeE:dx,C)<d(x,C), j=1,...,n}, ¥

where d denotes distance. The polyhedra are intersections of
half spaces and are always convex. The polyhedra partition in
a unique way, and the resulting diagram is known as the
Voronoi diagram.

The Voronoi polyhedron V; for a cloud C; is defined as the
interior polygon constructed by the perpendicular bisectors of
C; and all other clouds C;. A neighbor is defined as a cloud C;
whose perpendicular bisector contributes to ¥, that is, an edge
of V.. The Voronoi diagram formed from the distribution of
clouds in the galaxy will produce small area polyhedra for
clouds in dense regions and large area polyhedra for clouds in
sparse regions. The idea behind determining the Voronoi
diagram is to calculate the areas of each of the polyhedra and
throw away all clouds with associated area greater than some
tolerance area a,,. From the remaining distribution, each
cloud is tagged with a clump number along with all its remain-
ing neighbors. Then each of the neighbor’s neighbors is tagged
with the same clump number. This procedure continues until
every cloud has been tagged. As in the previous algorithm, if
any cloud is common to two or more clumps, these clumps will
be joined to ensure that each cloud will contribute to a unique
clump.

There are many procedures for constructing Voronoi poly-
hedra. Unfortunately, the simplest methods are so often the
most computationally inefficient. The method used here is that
developed by Brostow et al. (1978): more details on its imple-
mentation are described in Russell (1991).

First, the neighbors of C, are categorized. There are four
classes of neighbors: (1) direct neighbors (the midpoint of the
line C;C; lies on the polyhedron) (2) indirect neighbors (the
perpendicular bisector of C; C; contributes to ¥, but the mid-
point of C,C; lies outside V}), (3) degenerate neighbors (the
midpoint of C;C; is just a vertex of V), and (4) quasi-direct
neighbors (C; is a direct neighbor in the absence of all indirect
neighbors).
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The quasi-direct neighbors generate a direct polyhedron D,
and the quasi-direct, along with the indirect neighbors, gener-
ate V. On the average, direct polyhedra D have simpler shapes,
or fewer faces, than Voronoi polyhedra V. Hence, the idea is
first to construct the polyhedra D and then proceed toward V.

The overall work involved in finding the direct neighbors is
O(N?1n N). Obviously for N = 10,000 clouds this is unaccept-
able. Consequently, the small cell/big cell approach is also
adopted here. The sorting algorithm “quicksort™ then
becomes O[(ON/M)In(9N/M)], where M is the number of cells
in the computational grid. Although this is done N times to
make the overall work roughly O[(9N?/M)In(9N/M)], this
modification allows the method to be computationally viable.

Calculation of the indirect neighbors of cloud C, is achieved
by first circumscribing a sphere of diameter d; around D,, the
direct polyhedron. Then, any point more than d; away from C;
cannot be a neighbor; d; is by definition twice the distance
from C; to the furthest vertex of D;. This eliminates many, if not
most, of the points as indirect neighbors. Those which remain
are used to find V; from D;. Vertices, and sometimes edges, are
cut off by edges generated by indirect neighbors. Once the set
of C;, the possible indirect neighbors of ¥, has been exhausted,
the Voronoi polyhedron V,, by definition, is left. Figure 1
shows a plot of 100 randomly distributed points over a unit
square along with their associated Voronoi polyhedra. Notice
that the points on the outer edge have unbounded Voronoi
polyhedra. Once the n vertices with coordinates (xi, yi),
k=90,...,n—1 of V; are determined, the area of the n-sided
polygon can be calculated using
n—1
Z X Vk+1 = Yi-1)

k=0

; ®)

where indices are taken modulo n.
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Fi6. 1.—Example Voronoi Diagram. The area surrounding each particle C;
closer to C; than any neighbor C; is defined as the Voronoi cell V. For the
randomly distributed particles plotted here, the neighboring particles contrib-
uting to each of C;s Voronoi polyhedron V¥, are determined, and the corre-
sponding perpendicular bisectors are calculated.
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The small cell/big cell approach may cause some of the
neighbors of C; to be omitted and hence, the calculation of V,
to be slightly off. While there has been no evidence of this, it
should be noted that if a possible neighbor has been left out,
then it must lie at a great distance from C; (due to the width of
the cells). While the calculated area of V; for this possible case
would cause V] to be slightly larger than it would otherwise be,
it will in all probability be eliminated further along in the
calculation due to its large size anyway. Thus, the small cell/big
cell approach, as well as being far more efficient, should not
affect the overall calculation after the clouds with associated
areas greater than a,;, have been eliminated.

In the same manner that a value or expression for d,,, was
chosen, an expression for q,,,, the tolerance level at which areas
of the Voronoi polyhedra are thrown away, must also be
chosen. Since the wavelength increases linearly with r, and d,,
was chosen as a linear function of r, it is concluded that the
natural extension for a,, is a function of r2: in particular, the

following is employed:
or\?
=xl=1 . 9
Qo1 7'E<2> ( )

Note that {r/2 represents half the expected distance between
clouds; thus a,, represents a good approximation to the area
surrounding the cloud.

The final part of this algorithm involves clumping the clouds
into their corresponding features. This method is quite similar
in nature to that employed in the previous section. If the
Voronoi polyhedron V of cloud C; has area less than a,,, then
the cloud number and position, plus the cloud numbers of the
indirect and quasi-direct neighbors of C;, are saved. Taking the
clouds one at a time, C; and its neighbors C, are tagged with a
clump number. If any of these clouds have already been tagged
(i.e., already assigned a clump number), then the clumps are
combined. This process continues until all the clouds have
been assigned to a feature.

3. THE LEAST-SQUARES ALGORITHMS

For two random variables x and p, the standard least-
squares method calculates the parameters of the equation for a
straight line which give a best fit to the set (x;, y,). These
parameters for the standard least-squares method minimize
the error function Q,, the sum of the squares of the vertical
deviations. For simplicity, suppose that a distribution of A4
points (x;, y;) in Cartesian coordinates is to be analyzed.

3.1. Standard Least Squares

The pitch angle must somehow be approximated, given the
(x:, y;) coordinates of each of the clouds contributing to each
feature. For short features, a good approximation to the slope
can be obtained using a linear least-squares fit to the form

=&+ px, (10)

called the estimated regression line. The problem is to obtain
estimates & and f§ such that j provides the best possible fit to
the given data: & and f are defined as the values for which the
error function

N N .
9,= ; ()i = _; Lyi — @ + px))1? (11)

is a minimum. Differentiating partially with respect to & and ﬁ,
and equating these partial derivatives to zero yields the system
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of normal equations. The least-squares estimate of § becomes

D ‘M(Zl 1xy, (Zl le)(Z:VIYi) 12
P =—rcton-crw

and hence & becomes
21 1 Vi — BZ:{HC:'. (13)

The interest is in the orientation of the cloud set, that is, the
value of §.

For some cloud distributions, the least-squares approx-
imation previously described is highly inaccurate. For
example, if a distribution of points had a “ north-south” orien-
tation, vertical deviations from any point to the vertical regres-
sion lines would effectively be infinite. Hence, any method of
trying to minimize vertical deviations would lead to a mislead-
ing regression line. One way around this is also to minimize the
horizontal deviations and find the estimates § and § such that
the estimated regression line

%=7+36y (14)
provides the best possible fit to the data. Obviously, the least-
squares estimates of the regression coefficients are the values §

and § for which the quantity

= ¥ (e = ¥ D=+ 80 (15)
is a minimum. By a similar argument
s A xy) — O ) y)
o= 16
W 7 - O 19
and
')"\ Z‘:/le_ézl lyz (17)

N

Returning to the expression for @ the value of the error can be
calculated from the values of § and 8 in equations (16) and (17).
By the same means, @, can be found by substituting equations
(12) and (13) into equation (11).

3.2. Modified Least Squares

A best-fit line will vary depending on the coordinate system
used. For instance, if another coordinate system (£, n) were to
be used, the resulting slope would be different from those found
previously.

There is clearly one distinct best-fit curve which minimizes
the various error functions Q and is associated with a specific
coordinate system. This is defined here as the superior fit and is
the line ax + by + ¢ =0 which minimizes the sum of the
squares of the shortest distances (perpendicular distances) from
all points (x;, y;) to the line. It follows that the coordinate
system which gives this best fit is (£, ) where either the ¢ or 5
direction is also the direction in which the distances from the
points to the least-squares line are minimized, that is, the slope
of this least-squares line is parallel to either ¢ or 5. For the
superior fit calculation, in order to minimize the sum of the
perpendicular distances from each point to the line y = & + fx,
a more complicated function than that given in equation (11)
must be minimized. Also, it is beneficial to consider the least-
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squares line

ax+by+c=0 (18)

(in Cartesian coordinates) to eliminate any possibility of singu-
larities.

Since the perpendicular distance from a point (x;, y;) to a line
ax + by + ¢ = Ois given by

lax; + by; + ¢|

(az + b2)1/2 > (19)
it follows that
x x 2
(ax; + by; + ¢)
Q= _21 e = Zl s (20)

must be minimized. Differentiating partially with respect to q,
b, and ¢ and equating to zero gives the new set of equations
which has to be solved for the new regression estimates g, b,
and c¢. Assuming that cov (x, y) # 0 the following equality is
obtained:

2

%+273—1=0,

5 (e2))

where

Tzé[wz CoxE = (0 %) —

z I.Yl +(Z ly)z:]'

Zﬁ1x121=1y1 ‘/V21=1x1y1
(22
Hence the solutions to equation (4) are
§= —T £ (T2 + 1)¥2 23)
and hence
c al 1 Z
L= L—— 24
bT T BT B @4)
which gives a regression line y = —(a/b)x — c/b

Notice that if a or b is zero then cov (x y) is zero, and from
equatlons (12) and (16) § is zero or ! is infinite. Moreover,
since these represent the slopes of the regression lines mini-
mizing the vertical and horizontal deviations, respectively,
which are exactly the perpendicular distances, it follows that
the superior fit must be either the line

y; ifS,, <8,

yy —

(25)
or the line

(26)

yy = Oxx
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For simplicity, suppose that 7 = a/b and v = ¢/b. Then equa-
tion (20) can be rewritten as

< (tx; + y; + U)Z

O, )= 3

28
i=1 ?+1 (%)

It is possible to determine which root in equation (23) gives the
smallest error Q, by studying the properties of Hessian H of g,

(z, v) given by
— (QS)‘(‘E (QS)TD
n=lon o)

Alternatively, instead of using ax + by + ¢ = 0, the Cartesian
coordinate system with origin at the center of gravity of the
distribution of clouds can be used so that the regression line
simply becomes ax + by = 0. The distance from a point (x;, y;)
to this line is given by |ax; + by;|/a® + b»)'?, and it follows
that Y, (ax; + by,)z/(a + b?) must be minimized. This is
equlvalent to minimizing Y/, (ax; + by)* under the con-
straint a®> + b? = 1. By letting 4 and x be defined by

A___[:xl x2...xm]T’ le:a:l’
Vi Y2 Vu b

it follows that Y37, (ax; +by,)2— | Ax|i2 and a® + b =

[ x ||3. Hence the problem is reduced to minimizing || Ax |,
under the constraint | x ||, = 1. The well-known solution x to
this problem is the eigenvector associated with the smallest
eigenvalue of A7 A, where

(29)

(30)

w &
Z xi2 Z Xi Vi

T, _ | i=t i=1
A"A=| , P

Z Xi Vi Z J’iz
i=1 i=1

Hence, by calculating the quantities in the matrix in equa-
tion (31), the eigenvalues A can be found by solving
det (ATA — A = and the eigenvectors by solving
(ATA — Ax = 0. Although expanding this determinant and
solving for A is rather cumbersome, it turns out that the ratio
a/b is exactly the same as equation (23) with T given by equa-
tion (22). This particular least-squares approximation of mini-
mizing perpendicular deviations is also referred to in the
literature as the geometric mean regression line.

G

3.3. Extensions to a Spiral Coordinate System

It was evident that using a linear least-squares approach
gave only first-approximation results. Hence a more accurate
least squares-approach was developed which could cope with
the curvature of the longer spurs and spiral arms, as well as the
shorter secondary features.

The model galaxies on which the pitch-angle analyses are
performed are generated using clouds representing gas clouds.
The cloud orbits are influenced by several factors, in particular,
a spiral-perturbed forcing taking the form of a density wave
modal spiral. The global spiral structure consists of two log-
spiral arms asymptotically approaching an inclination of 10°.
For this reason, least-squares estimates are developed which fit
log-spirals through the features. The 10° pitch angle should
now be picked up for the longer arms, and pitch angles of the
shorter features should be estimated more accurately.

A best-fit curve of the form

()
r=roexpl-—
D

(32)
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is required, where p is the pitch-angle parameter for the feature
being analyzed in the least-squares calculation and 8 increases
with r along a spiral arm. Taking the logarithm of both sides
gives

6=6+ flnr, (33)

where @ = —plnr, and f = p. Note that equation (33) can be
written in dimensionless form as In(r/r,) = 6/p. Thus, since
both § and Inr are dimensionless, the previous analysis of
finding the superior fit can be applied successfully in this spiral
coordinate system.
Minimizing the perpendicular error in (Inr, 6) space results
in
& & [6:— @+ Blar)]?
= Y(egp= Y BT A
,; . ,; 1+ p
being minimized. Following the same analysis as in Cartesian
coordinates it can be shown that

(34)

p2-2Tf—1=0, (35)
where
o1
2
y [w Lilnr? — QX Inr) — 4 3L 07+ O, 9,)2]
Yinr Y, 6, — &Y Inr6,
(36)
Hence the solutions to equation (35) are
B=T+(T*+ 112 37)
and
P A |
Pyt L Gy

which give the regression coefficients in equation (23). It fol-
lows that the pitch angle i, = tan~! (1/f).

The length of each of the spiral features must also be calcu-
lated. The length s of a curve is given in polar coordinates by

=[G e

Since the general form of the least-squares estimate is 6 =
& + BlInr(where f is assumed nonzero), it follows that

(39)

s=(1+ B‘Z)”ZJ exp [(0 a)jldf) (40)
61 B
Given 8, and 6, the curve length can then be expressed as
0 0
s = K| exp <—3> —ex (—f)i' , (41)
[ 8)”P\B

where K = (f% + 1)1/? exp (—&/f). Note that for § =0, the
pitch angle is 7/2 and therefore a straight line (passing through
the origin). This case is simple and treated separately.

3.4. The Kolmogorov-Smirnov Test

The clumping algorithms described previously are not invin-
cible to joining two predetermined distinct features by accident
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and treating the resulting distribution of clouds as a single
feature. Moreover, the least-squares method will proceed to fit
an inaccurate regression line through this distribution of
points. This sort of inaccurate least-squares estimate may
strongly affect the final pitch-angle distribution, and hence
these inaccuracies must be detected and eliminated from any
further analysis.

The Kolmogorov-Smirnov test represents a formal pro-
cedure for checking whether results from least-squares analyses
do in fact agree with the underlying probabilistic model
assumed for the original data. The assumption with the least-
squares calculation is that once the least-squares estimates
have been found, the distribution of errors (which in this case
are the minimum distances from the data points to the least-
squares regression line) are normally distributed with mean
Zero.

Suppose Y is a continuous random variable having distribu-
tion function F(y). A random sample of n realizations of Y
yields the observations y,, ..., y,. Reordering these observed
values from smallest to largest, and denoting the ordered y; by
Yy £ Vo) £+ < Yy, the empirical distribution function can
be expressed (assuming y, = — co)as

F (y) = fraction of the sample less than or equal to y
i-1
= n

1 if y= Y

lf Y(i—nSySy(i) i=1,...,n

(42)

The null hypothesis that the continuous random variable Y
(error value for the analysis here) is assumed to have a distribu-
tion function given by F(y) (normal distribution with mean u
and standard deviation o) is rejected if the K-S statistic D,
based upon the maximum distance between F(y) and F,(y),
and defined by

D = max [ F(y) — F,(y)|, (43)

is too large. To find the observed value of D, it is necessary to
check only

DY = max [é—F(yi)] and D~ = max [:F(yi)—i; 1}

1<i<n l<i<nm
(44)

and define D = max (D*, D7). For a normal F(y) with an
unknown mean and variance, the modified form of D is given
by

D_.4 = D(n''? —0.01 4+ 0.85/n'1?)

mod —

(45)

and the value of this modified D cutting off an upper-tail area
of 0.01 is 1.035 (Stephens 1974).

The K-S test is performed in both (Inr, 6) space and (x, y)
space. The errors in (Inr, 6) space are defined as
-G+ flnr)

s

oA+

Since the exact value of the shortest distance from a point to a
spiral is difficult to calculate, the following approximation in
the (x, y) space is used:

(46)

E¢ dr d@

=77 47
@™ “
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where
d, =r;—exp [(6; — &)/B1, (48a)
dy =110, — @+ flnr)]| . (48b)

For each of the distributions of errors Ef and E{, the mean and
standard deviation are calculated. Since a normal distribution
of mean y* and standard deviation ¢° is assumed, the probabil-
ity that Y is less than or equal to y is given by

Pr{Y<y}= P(y ;”)

49
where

1 * —s2/2
P(x) = W jw e s ds . (50)

The following approximation for P(x) is taken from Abramo-
witz & Stegun (1972):

P(x) =1 — Z(x)(b.t + byt + byt> + byt* + bst°) + €(x) ,

(51
where
t=(1+02316419x)"'; |ex)|<7.5x%x 1078, (52
Z(x) = TN e~ (53)
with the coefficients
by =0.319381530, b, = —0.356563782,
by = 1.781477937, b, = —1.821255978, (54)

bs = 1.330274429 .

Hence, for each of the values of E}, the probability of an error
being smaller than Ej is calculated. This is compared with i/n
and (i — 1)/n. The maximum value over all n values is deter-
mined and is, by definition, the K-S statistic D.

The test is applied to both sets of errors Ef and ES. If, for
both of the distributions of errors, the modified form of the K-S
statistic is greater than the 0.01 tolerance level of 1.035, the
least-squares estimate of the pitch angle is eliminated. This is a
stricter test than simply applying the analysis to say Ef, that is,
greater than 99% certainty that those least-squares fits elimi-
nated using the K-S test are not accurate approximations to
the orientation of the cloud distribution.

4. RESULTS AND DISCUSSION

In existing mathematical-computational simulations by
Roberts et al. (1990, 1992), interstellar clouds orbit the galactic
disk under the influence of a variety of forces. The cloud trajec-
tories are orbits in the galaxy’s gravitational field, perturbed by
energy-dissipative cloud-cloud collisions and by velocity alter-
ing interactions with expanding supernova remnants. The
force field due to self-gravity, the gravitational force induced
by the neighboring clouds, is also included. It was evident that
the gas mass fraction c, of the total gas mass to total stellar
mass was of paramount importance in aiding the formation
and assembling of massive aggregations of clouds into giant
cloud complexes, spurs, and featherlike features (Roberts &
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Adler 1989). Furthermore, the fraction A, of perturbed spiral
forcing versus axisymmetric forcing played a key role in
describing the global spiral structure.

The model galaxy considered here (Case 15 of Roberts et al.
1992) shown in Figure 2 combines the two parameters ¢, and
Ag. The strong spiral arms can be easily traced, but more
striking is the abundance of secondary structure. The charac-
teristic nature of this flocculent spiral structure is of great inter-
est, in particular, the pitch-angle distribution and the
constitution of the many secondary features. When strong
spiral forcing is combined with a significant gas mass fraction,
both the global spiral structure and local instabilities are
present. The global spiral arms are highly disjointed and due
directly to the high ratio of gas-to-stellar mass. The segments
of the global arms have been oriented outward. In fact, the
global arms seem to consist of a sequence of spiral density
inhomogeneities each with greater orientation than the global
arms. This phenomenon is more evident at inner regions of the
global arms, where compact features lie closer together. The
secondary features discussed here are synonymous with what
many astrophysicists classify as “large cloud complexes, giant
molecular clouds or superclouds ” (Elmegreen 1991a, b).

It is difficult to distinguish by simple observation which are
the prominent features in our model spiral galaxy and in par-
ticular which clouds truly contribute to a given feature. For
this reason a set of tolerance levels is introduced. This is
invoked by introducing a sequence of parameters { in equa-
tions (6) and (9) used in the d,, and q,, algorithms. A promi-
nent feature should be captured using a majority of the
tolerance values. The distribution of clouds constituting this
feature will differ slightly for the sequence of {, but the resulting
pitch angles should vary over only a few degrees at most.
Hence, they will significantly contribute to the probability
density function about the mean value of these resulting pitch

-10600

1 . { - H
-10000 0 10000

F16. 2—Model galaxy Case 15 at 480 Myr (taken from computational
work of Roberts et al. 1992). This galaxy was simulated using strong spiral
forcing (10%-15%) and a fairly high gas mass fraction (~6%). The global
spiral arms are clearly disjointed and consist of a succession of distinct second-
ary features.
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angles. This approach seems befitting since from observations
one would be hard pressed to attach an exact pitch-angle value
to any given feature: rather, one would make a measurement
and claim accuracy to within a few degrees.

Nine values of {, for both the d,; and q,, clumping algo-
rithms, are used. The values of d,, are given by

(-
=lo. =1,...
dior [0012+ s0 P 1=h? (55)

and equivalently for a, , by

1 1-17)12
Qo= n{[omz + (ST)}} I=1,...,9. (56

The spiral loci generated after application of the d,,; algo-
rithm to the gas cloud distribution are presented in Figure 3.
Those regression spirals which seem to do a poor job of
approximating the orientation of a certain feature are elimi-
nated by the Kolmogorov-Smirnov goodness-of-fit test, and
consequently not included in the plots. Ignoring for the
moment the morphology of the galactic disk, it is clear that the
denser regions constituting secondary features have been suc-
cessfully isolated. Furthermore, the least-squares algorithm
has accurately modeled their orientations.

The method by which the distribution of pitch angles is
determined is also approximate. For each integer value of i,
pitch angles between i, + 2°5 for all values of { are summed
and converted to fractions to produce the associated probabil-
ity density functions. Negative pitch angles are disregarded as
are those greater than 90°. Note that the pitch-angle values
computed cannot be treated as exact, but merely good approx-
imations. Hence, this binning and averaging technique,
although effectively smoothing the probability density func-
tion, is believed to furnish more appropriate information.

10000

-10000 0 10000

F1G. 3—Spiral loci for model galaxy Case 15 (Roberts et al. 1992) after
employing the d,, partitioning algorithm and the superior fit spiral least-
squares method. Each spiral loci represents how the d,,, algorithm has cap-
tured a feature. For each of the features captured the orientation has been
successfully modeled.
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The probability density functions associated with the spiral
loci presented in Figure 3 are displayed in Figure 4. By apply-
ing weights which are proportional to a feature’s length, the
pitch angles of longer features become more prominent (Fig.
4b). In Figure 4¢ the probability density function is weighted
by the number of clouds in, or equivalently mass of, each
feature resulting in dense features being more significant. In
Figure 4a there is no weighting. In addition, within each graph,
there are three curves. The top curve is the calculated probabil-
ity density function. The middle curve takes into consideration
only those features of length greater than 1 kpc, and the bot-
tom curve, those greater than 1.5 kpc. Hence, the bottom curve
in Figure 4c supplies the most information concerning the
longer, denser, and consequently most prominent features.

Figure 4 exhibits two preferred pitch-angle values. The
omnipresent broad peak lying roughly between 20° and 35°
can be attributed to segments of the global arms. The second-
ary peaks at around 40° and just above 50° can be attributed to
spurs, bridges, and feathers. There is a rather surprising
absence of pitch-angle values both below 15° and above 60°.
This is even more astonishing since the underlying density
wave modal spiral varies around 10°. The global arms are
disjointed ; most global arm segments seem to be pulled inward
resulting in an increased pitch angle. This may be due to

0.05 T T T T
a
0.04 ]
Probability 003 — -
Density
Function gy | N A ]
~ N
(! \ \
0.01 / y \ =
0 T T I ] ] T } T
0.05 T ] I ] ] T T T
b
0«04 —{ —
Probability 003 — =
Density
Function (9 A i _
ha ] \ \\
0.01 w -
0 T ] T T I
0.05 ] I T ] T I T T
C
0.04 i
Probability 0-03 -1
Density
Function gy _| _
0.01 4
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FiG. 4—Probability density function of pitch angles (a) weighted by length
(b) and weighted by mass (c) for model galaxy Case 15 for the spiral loci plotted
in Fig. 3. The top curve in each plot is the exact probability density function:
the middle and bottom curves represent features longer than 1 and 1.5 kpc,
respectively. The bottom curve therefore represents the preferred pitch angles
of the most prominent features.
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reverse shear or possibly SSPSF in the global arm causing
shells and the formation of highly self-gravitating giant molec-
ular complexes or superclouds which in due course get elon-
gated by differential rotation of the disk. These competing
physical mechanisms will be analyzed in a later paper. Note
that the density of the secondary features varies independently
with position. It can be argued that the denser superclouds are
strongly self-gravitating and have extensive internal random
motions. These clouds are associated with values of the non-
dimensional parameter P/Go? < 1 (Elmegreen 1991a, b) and
are furthermore, predominantly molecular clouds. Here, P is
the external pressure, o, is the average mass column density of
the cloud, and G is the gravitational constant. Self-gravity
tends to be more important in regions with relatively large gas
densities such as spiral arms. The sparser clouds are more
likely diffuse with P/Go? > 1 and can accordingly be inter-
preted as predominantly atomic.

To examine whether or not there is any biasing by the d,
clumping algorithm the a,,, algorithm is employed on the same
galaxy, and, after application of least squares on both sets of
features, the resulting distributions of pitch angle are com-
pared.

For the area tolerance expression given in equation (56), the
a,,; algorithm is applied to the same distribution of gas clouds
in our model galaxy seen in Figure 2. The spiral loci, resulting
from application of the same least-squares procedure, are
shown in Figure 5. Generally, the same features have been
isolated, and the pitch angles seem to be approximately the
same. There is, however, one fairly noticeable difference. The
spiral loci in Figure 3 are consistently longer than their
counterparts in Figure 5. This is because the d,, algorithm
includes slightly more clouds in a given feature. Due to the
nature of the d, algorithm, a cloud on the outer edge of a
feature is usually considered as contributing to that feature
since it is frequently a neighbor of another cloud already
satisfying the criterion requiring a “sufficient” number of

-10000 0 10000

F1G. 5.—Spiral loci for model galaxy Case 15 (Roberts et al. 1992) after
employing the a,, partitioning algorithm and the superior fit spiral least-
squares method.
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clouds within a certain distance. For the g, algorithm, the
same cloud (on the outer edge) will most likely have a fairly
large Voronoi area. It will, thus, have been eliminated by this
algorithm since large Voronoi areas are associated with sparse
regions of the galaxy.

A comparison of Figures 4 and 6 suggests that the added
length from employment of the d,; algorithm does not signifi-
cantly affect the pitch-angle distribution. The distributions,
although not exactly the same, do display similar character-
istics. In the distributions weighted by mass, that is, the bottom
graphs, the bottom curve illustrates that for features greater than
1.5 kpc there are essentially two primary peaks. The broad
primary peak between 20° and 35° is attributed to segments of
the global arms. The apex at just above 50° is due to spurs and
feathers. Considering that features have been isolated using
completely different computational methods, it is reassuring to
see that the two most important distributions just discussed
resemble one another so closely.

The two partitioning algorithms previously employed were
applied in Cartesian coordinates. In an effort to determine
whether or not the coordinate system employed biased the way
in which the features were captured, the a,,, analysis was also
implemented in (Inr, 6) coordinates. In this coordinate system
the spiral loci become linear loci. Also, the mean distance
between clouds becomes more uniform, and so the a,, par-
titioning algorithm can be applied with a constant expression

0.05 T | I T T ;s T T
a
0.04 4
Probabitity 003 — -
Density
Function 0.02 — 1
0.01 ]
0 [/\-/¥
T T T T T T T
005 I T | — T T I )
b
0.04 o
Probability 003 — -
Density
Function gy _| _
0.01 _
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005 1
C
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Function gy _| _
0.01 - _
0 —T
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F1G6. 6.—Probability density function of pitch angles (a) weighted by length
(b} and weighted by mass (c) for model galaxy Case 15 associated with the
spiral loci in Fig. 5.
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for a,,; in equation (9). Using a linear version of the superior fit
least-squares method, the resulting distributions of pitch
angles were remarkably similar to those presented in Figures 4
and 6 (see Russell 1991).

It can be concluded that the distributions of pitch angles
resulting from the application of the a,, and d,, algorithms,
along with the superior fit spiral least-squares method, are a
direct result of the nature of the galactic distribution of gas
clouds and not a result of biasing by the partitioning algo-
rithms, nor the coordinate system in which they are imple-
mented. The distributions are not skewed by the numerical
methods, but depend upon the morphology of the galaxy
under investigation.

5. CONCLUSIONS

The primary goal of this research was to develop an automa-
ted mathematical method which could successfully isolate the
many different features in prototype and observed spiral gal-
axies and accurately measure the pitch angles and lengths of
these individual features. This was achieved by an effective
synergism of the properties of the Voronoi diagram and a
modified spiral least-squares algorithm. The method was
applied to analyze the evolution of specific features in a proto-
type galaxy exhibiting flocculent spiral structure.

The mathematical-computational method was separated
into two components. Initially, the galaxy was partitioned into
dense regions constituting features using two different
methods. The results obtained using these two partitioning
algorithms were very similar, implying that no numerical
biasing was evident and that capturing of the features was
consistent.

After the clouds composing each feature were ascertained,
various least-squares methods were employed to calculate the
preferred orientation of the cloud distributions. In the develop-
ment and analysis of the least-squares methods it was deter-
mined that standard least-squares methods underestimated the
true slope of the distribution and, furthermore, were incapable
of approximating an orientation of 45°. By introducing a
superior fit least-squares method, developed with the intention
of calculating true orientation rather than a regression line, the
problems were overcome. Since most of the features formed
were of spiral shape due to differential rotation, a (Inr, 8) coor-
dinate system was employed to perform the least-squares
analysis. The features of a simple test galaxy were successfully
separated and their pitch angles approximated accurately.

The model galaxy which combined 10%-15% spiral forcing
with 6% gas mass fraction exhibited local and mesoscale fea-
tures with preferred pitch angles between 20° and 40° attrib-
uted primarily to prominent segments, spurs, feathers, and
secondary features of the global arms. The secondary peak at
50° was attributed to prominent spurs protruding from the
outer edge of the global arms at large radial values. These
results corroborate observational data obtained by Elmegreen
(1980) and Weaver (1970). Further corroborating results are
found by Russell & Roberts (1992) who extend the numerical
methods and algorithms developed in the present paper for
application to two observed galaxies, M101 and NGC 1232.

This work was supported in part by the National Science
Foundation under grants AST 87-12084 and DMS 91-06029
and by NASA under grant NAGW-929. The computations
were carried out on the AMSUN cluster and the CDC 855 at
the University of Virginia and the CRAY Y-MP at the Pitts-
burgh Supercomputing Center under grant AST 838-0019P.
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APPENDIX
TESTING THE NUMERICAL METHOD

Each compartment of the overall numerical method is tested on a simple test galaxy for which the features and their primary
characteristics are known. The test galaxy seen in Figure 7 is generated by using portions of spiral arms inclined at constant pitch
angles. To verify that the algorithm splits up features successfully, the portions of the spiral arms in the test case are all distinct. To
demonstrate that the least-squares algorithm is able to capture more than one prominent pitch angle, two different i, values are
introduced. Features at 10° are of different length and density than those at 45°; this difference should be portrayed in the resulting
probability density functions. Since the global spiral arms in the model galaxies of Roberts et al. (1990, 1992) closely approximate
10°, it is the inclination chosen for the longer spiral segments; 45° was chosen to portray the inadequacy of the standard
least-squares method in successfully approximating this value.

The properties of a spiral feature are of course nonlinear, but for short features the spiral shape is difficult to distinguish. Hence, a
linear estimate is often sufficient. Various linear least-squares methods were applied to the test galaxy as well as various prototype
galaxies of Roberts et al. (1992) (see also Russell 1991). In general, the linear methods successfully modeled the shorter features, but
for galaxies exhibiting long arm branchings, linear methods were found to be inaccurate.

For model galaxy simulations where the amount of self-gravitational forcing is kept to a minimum, the long global spiral arms
become more prominent. Since the longer global arms asymptotically approach logarithmic spirals, the search for features of this
shape was initiated. Various spiral least-squares methods are applied to the test galaxy.

Following the derivation in § 3 for the standard spiral least-squares method, least-squares regression lines of the forms 8 =
@+ Blnrand In? = § + 86 are estimated for each feature. The estimate which produces the least absolute error is taken as the best
approximation to the orientation of the cloud distribution constituting a given feature. The spiral loci representing each of these
estimates associated with each feature are seen in Figure 7.

It is clear that all distinct features are isolated successfully by the a,, algorithm, and their orientations are modeled adequately by
the standard spiral least-squares method. The accuracy of the loci is also seen to be independent of the length of the features.

Seen in Figure 8 is the probability density function (weighted by feature mass) associated with the set of regression lines in Figure
7. The 10° peak is produced as expected, but the other expected peak is bisected at 45°. The value of zero at 45° implies that no
features were modeled with pitch angles between 42°5 and 47°5. Standard spiral least squares calculates two regression lines.

0.08 T I I I T T 1 1
0.06 -
Probability
Density  0.04 _
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0.02 -
o 0 I | ! T T ] T
1 R , 0 10 20 30 40 S0 60 70 8 90
-10000 0 10000 pitch angle /4 (degrees)
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FiG. 7—Test galaxy exhibits 10 features at constant pitch angles of 45° between 7 and 9 kpc, and five features at 10° between 11 and 13 kpc all evenly spaced
axially around the galaxy. For each of the 45° features, 250 particles are distributed initially along each arm. The (x,, y,} positions are randomly perturbed up to 5%
of the radial value. The 10° arms have 500 particles, each perturbed in the same fashion. None of the spiral segments overlap; each feature formed by either of the
partitioning algorithms has one preferred pitch angle and is unaffected by stray particles from another neighboring feature. The spiral loci produced, after employing
the a,, partitioning algorithm and the standard spiral least-squares method, are included. The loci closely approximate both the orientation and length of each
distinct feature.

FiG. 8 —Probability density function of pitch angles weighted by mass associated with the spiral loci seen in the test galaxy in Fig. 7 produced by the a,,
partitioning algorithm and the standard spiral least-squares method. The 10° pitch angle is captured, but the 45° orientation has been either underestimated or
overestimated for each regression spiral resulting in a separation of the peak.
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F1G. 9—Probability density function of pitch angles weighted by mass associated with the spiral loci produced using the q,, partitioning algorithm and the
superior fit spiral least-squares method. The 45° peak is now modeled accurately since the superior fit least-squares algorithm fits a unique best-fit spiral locus.

The § = & + BInr estimate has produced values of i, < 45°, and the In = § + 80 estimate has produced values of i, > 45°. In
general, standard least squares tends to produce a regression line with slope less than that of the true orientation of the data. Hence,
depending on the regression line chosen in the standard least-squares method, the orientation is pulled either side of the true value
of 45°.

The superior least-squares method overcomes this problem. The resulting spiral loci are almost exactly the same as those seen in
Figure 7, but the associated probability density function presented in Figure 9 shows the expected peak at 10° and 45°. Again, this
distribution is weighted by the mass of each feature, and since the majority of the features are inclined at 45° the associated peak is
more prominent than that at 10°,
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